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Maximum-entropy spectrum reconstruction derives much of reconstruction of multidimensional spectra. With linear
its power from its nonlinearity. This nonlinearity causes diffi- methods such as the DFT, a transform can be computed
culties in several contexts, however, including computation of by successive application of a one-dimensional DFT to the
multidimensional spectra and quantification of reconstructed individual rows; linearity ensures that the response is propor-
spectra. We describe two methods for avoiding these difficulties: tional to the amplitude of the spectral components and that
a ‘‘Constant-l’’ algorithm for performing row-wise reconstruc-

the rows can be processed independently. If MaxEnt is ap-tions, which uses a fixed weighting of the entropy and the experi-
plied carelessly to individual rows, the extent of the nonlin-mental constraint in the objective function, and in situ error
earity will vary between rows, distorting peak shapes and,analysis, for calibrating the nonlinearity. These methods are
more importantly, rendering accurate quantification almostapplied to data from quantitative J-correlation and relaxation
impossible.experiments. q 1997 Academic Press

Remedies exist for both of these difficulties. To ensure
that the nonlinearity is uniform throughout the spectrum,

INTRODUCTION one simply needs to apply MaxEnt reconstruction to the
entire spectrum as a whole (holistic reconstruction), rather

Maximum-entropy (MaxEnt) reconstruction is a powerful than row- or column-wise. The problem with this approach
method for spectrum analysis that avoids some of the short- is that the computation of the MaxEnt reconstruction requires
comings of classical methods based on the discrete Fourier intermediate storage many times larger than the size of the
transform (DFT) (1–31) . Among its properties are the abil- final spectrum, rendering the demands for memory so great
ity to estimate high-resolution spectra from short data rec- that supercomputer-class machines are required. Quantita-
ords, to deconvolve spectra without enhancing the noise, tive application of MaxEnt reconstruction is possible by ad-
and to estimate spectra from time series that have not been justing the parameters for the reconstruction to yield nearly
sampled in a uniform fashion. An intrinsic characteristic of linear reconstructions, at the expense of some of the desirable
MaxEnt is that it is nonlinear, and the extent of the nonlinear- features of MaxEnt (such as noise or artifact reduction), or
ity depends on the data and on the values of adjustable by Bayesian analysis of the results to arrive at estimates of
parameters used in the reconstruction. While this nonlinear- the true amplitudes of the spectral components (20, 21) .
ity is directly responsible for some desirable properties of In this paper, we describe two simple methods for sur-
MaxEnt reconstruction, it also causes some problems. mounting difficulties resulting from the nonlinearity inherent

The major difficulty with MaxEnt resulting from nonlin- in MaxEnt reconstruction. The first is an algorithm which
earity is that the integrated areas or volumes of peaks are not ensures that the nonlinearity of MaxEnt reconstruction is the
proportional to the amplitudes of the spectral components. same for all rows or columns, thereby permitting a row-wise
Obviously, this complicates the use of MaxEnt reconstruc- reconstruction that is essentially equivalent to the result that
tion for quantitative applications, such as quantitative J-cor- would be obtained by computing the holistic reconstruction.
relation (32) or relaxation-time measurements (33, 34) . A This algorithm is well suited to workstation-class computers
solution to this problem would permit us to realize the bene- found in many laboratories. The second method, which we
fits of nonlinear sampling (11–14, 25, 27–29) in these ap- call in situ calibration (31) , allows correction for the nonlin-
plications. earity by adding signals of known amplitude to the time-

A further difficulty arises in the row- or column-wise domain data prior to reconstructing the spectrum. Using the
known peaks for calibration, one can obtain reliable esti-
mates of the amplitudes of spectral components. In addition,§ To whom correspondence should be addressed.
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333MAXIMUM-ENTROPY RECONSTRUCTIONS

in situ error analysis facilitates estimation of the uncertainties
in the results.

We will demonstrate the application of these methods to
two types of NMR experiments: quantitative J-correlation
(HNHA) (32) and a relaxation-time series (33, 34) . In both
cases, results obtained using linear sampling in the indirect
dimension are compared with those using nonlinear sam-
pling. We find that the quantitative J-correlation results are
not very sensitive to the nonlinearity of MaxEnt reconstruc-
tion, in contrast to the relaxation measurements, for which
some form of calibration appears to be essential.

OVERVIEW OF MAXENT RECONSTRUCTION

The details of MaxEnt reconstruction of NMR spectra
have recently been described elsewhere (30, 31) . Here we
present a brief overview.

MaxEnt reconstruction of a spectrum is a problem in con-
strained optimization: Find the spectrum f which maximizes
the entropy S( f ) , subject to the constraint that f is consistent
with the measured data. The consistency of the spectrum FIG. 1. (A) The value of l as a function of f2 chemical shift obtained

from a Constant-aim (see text) MaxEnt reconstruction in f1 of NOESY datawith the measured data can be quantified by defining ‘‘mock
for a small protein. (B) t1 Å 0 cross section from the t1 0 f2 interferogramdata’’ m obtained from f by inverse Fourier transformation
used as input for the reconstruction. The value of l is clearly correlated(IDFT), and requiring that the mock data match the actual
with the signal intensity.

data d to within the expected experimental error. The match
can be measured by the unweighted x-squared statistic

where l is a Lagrange multiplier that determines the relative
weight of the entropy and the constraint that C( f ) £ C0 .

C( f ) Å ∑
N

iÅ1

Émi 0 diÉ
2 Å ∑

N

iÅ1

ÉIDFT( f )i 0 diÉ
2 , [1] (Because the entropy functional is convex, there is a unique

global solution, and it satisfies C( f ) Å C0 .) The value of l
is chosen so that at the maximum of Q , we have C( f ) Å

where the data d has N elements di ( the mock data may C0 . The parameters of the reconstruction are the constraint
have more than N elements) . The spectrum f is considered value C0 (or equivalently, aim) , the scale factor def, and the
consistent with d if C( f ) £ C0 , where C0 is determined by size of the spectrum M .
the experimental error. Typically, C0 is comparable to the The constrained-optimization problem cannot be solved
number of points in the data set times the square of the analytically. Several numerical algorithms have been pub-
expected error for each point. For convenience, we will gen- lished (4, 17, 18, 31) . They all work by iteratively improv-
erally refer to aim instead of C0 ; aim is defined as

√
C0 /2N ing a trial guess of the spectrum and simultaneously ad-

and is comparable to the expected error in each component justing l so as to arrive at a final solution satisfying the
(real and imaginary) of each point in the data set. criteria above.

The entropy has the form
THE CONSTANT-l ALGORITHM

An interesting feature of the method of Lagrange multipli-S( f ) Å 0∑
M

iÅ1

R( fi ) , [2]
ers is that it provides a family of potential solutions to the
constrained-optimization problem. Each value for the La-

where R is a function resembling R(z) Å (ÉzÉ/def ) log(ÉzÉ/ grange multiplier l will give rise to a spectrum fl . This fl
def ) , M is the number of points in the spectrum, and def maximizes Q (and hence S) among all spectra g having
is a scale factor. The actual functional form of R is more C(g) Å C(fl) . The correct value of l is the one for which
complicated but irrelevant to the present discussion (31) . C(fl) is equal to the desired value C0 . Although it is not
The constrained-optimization problem is solved by maximiz- explicitly indicated by our notation, Eq. [1] shows that the
ing the objective function value of C( f ) depends on the experimental data d as well

as on f . Consequently, the desired value for l will depend
on the data, as can be seen in Fig. 1.Q( f ) Å S( f ) 0 lC( f ) , [3]
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334 SCHMIEDER ET AL.

FIG. 2. The in situ calibration curves obtained for a synthetic data set, showing the dependence of the nonlinearity of MaxEnt reconstruction on the parameters
def and aim. The two-dimensional data set consisted of 512 complex points in t2 and 256 complex points in t1, with a spectral width of 2000 Hz in both dimensions.
The synthetic signals comprised 11 exponentially decaying sinusoids having linewidths of 10 Hz in both dimensions, with evenly spaced amplitudes. Gaussian
random noise (RMS Å 30) was added to the signals. Cosine-squared-bell apodization was applied in t2 prior to Fourier transformation, and holistic MaxEnt
reconstruction was used in f1, with a spectrum length of 512 points. Peak intensities were determined by volume integration.

Now consider a multidimensional data set which has been form; for MaxEnt reconstruction however, the two ap-
proaches will generally yield different results.transformed to the frequency domain in every dimension

except one, which we will call the active dimension. To A detailed comparison of the computations involved illus-
perform a Fourier transform along the active dimension, one trates the relation between the two approaches. Let fi1, . . . , in

can extract individual vectors ( i.e., rows) parallel to the be a point from the vector under consideration. From the
active axis and process each independently as if it were a form of Eq. [2] , it is clear that
one-dimensional data set. Row-wise MaxEnt reconstruction
works in the same way: For each vector, the sums in Eqs.

ÇSR( f )i1, . . . , in Å ÇSH( f )i1, . . . , in , [4]
[1] and [2] range only over points in the individual vector,
rather than over the entire spectrum (as they would for holis-
tic reconstruction). There is no meaningful difference be- where ÇSR is the gradient of the entropy for the row-wise

reconstruction andÇSH is the gradient for the holistic recon-tween row-wise and holistic application of the Fourier trans-
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335MAXIMUM-ENTROPY RECONSTRUCTIONS

TABLE 1struction. Computation of the gradient of the constraint is
Values of l Resulting from Holistic Reconstruction of amore complicated, since it requires transforming the trial
Synthetic Data Set, Corresponding to the Data in Fig. 2spectrum to the time domain in order to evaluate Eq. [1] .

Nevertheless, since the transformation is along the active
aim def l

dimension, the value of the gradient at any particular point
depends only on points in the same vector. Consequently, 30 100 2.3300

30 1000 7.2967
30 5000 14.5945ÇCR( f )i1, . . . , in Å ÇCH( f )i1, . . . , in . [5]

1000 100 0.0196
1000 1000 0.0908This means that for any value of l, the same spectrum
1000 10000 0.1784f will maximize Q( f ) for both the row-wise and holistic

reconstructions. Thus, the only difference is that for row- 30 100 2.3300
500 100 0.0674wise reconstruction, different values of l will apply to differ-

1000 100 0.0196ent rows (since l depends on the data) , whereas for holistic
reconstruction, a single value of l applies to the entire spec- 30 1000 7.2967

500 1000 0.3069trum. Consequently, in a row-wise reconstruction, the non-
1000 1000 0.0908linearity varies from row to row, since the relative weight

applied to the entropy and the constraint differs from row Note. For fixed def, l varies inversely with aim.
to row. The manifestations are often subtle, but they can be
important when quantitative analysis is performed.

This analysis indicates how to obtain the benefits of holis-
the intensities of the resulting peaks with those of the truetic reconstruction—namely, a uniform nonlinearity—at the
signal components. The synthetic signals take the form oflow expense of a row-wise computation. Rather than ad-
exponentially decaying sinusoids, with phases and decayjusting l to obtain C( f ) Å C0 , one should use a single fixed
rates (or linewidths) chosen to be similar to those of thevalue of l for all rows of the data set. This is the Constant-
true signals, and frequencies chosen to avoid overlap. Thel algorithm. Making this change simplifies the computation,
amplitudes are chosen to span the range of signal peak inten-as it removes the need to search over l; however, it intro-
sities.duces the problem of finding the appropriate value for l. A

Plotting the measured intensities of the synthetic peaksreasonable approach is to select a representative row from
against their known amplitudes results in a calibration curve,the data, compute a normal MaxEnt reconstruction of that
which can be used to determine the relative intensities ofrow, and use the resulting value of l. The final spectrum
the signal peaks. Since the synthetic components undergowill not satisfy C( f ) Å C0 exactly, but it should be close
the same processing as the signal components, they shouldif the representative row is sufficiently typical.
experience the same distortions. Consequently, use of theAn additional advantage of the Constant-l algorithm
calibration curve will provide a more accurate measure ofarises in the analysis of multiple spectra, for example, a
intensities than direct use of volume or area measurements.relaxation series. Holistic reconstruction of the series would
The curve can be obtained simply by piecewise linear (oruse different values of l for the different spectra, thereby
higher-order) interpolation between the measured intensitiesintroducing unwanted intensity variation. With the Constant-
of the synthetic peaks. The accuracy of the calibration curvel algorithm, on the other hand, a single value of l can be
will depend to some extent on the number of synthetic peaks,used for all the spectra in the series.
the nature of the nonlinearity, and the form of the interpola-The Constant-l algorithm is a row-wise procedure. We
tion. The correction cannot be perfect, because the nonlinear-will use the term ‘‘Constant-aim’’ to refer to row-wise re-
ity of MaxEnt reconstruction means that the intensity of aconstructions as originally described—i.e., in which l is
reconstructed peak will partly depend on factors other thanallowed to vary between rows so as to achieve C( f ) Å C0

the underlying signal amplitude (such as the linewidth orfor each row.
the density of neighboring peaks) . No simple calibration
curve can correct for these effects; fortunately, the residualIN SITU CALIBRATION
errors appear to be acceptably small.

The in situ approach can be used to explore the depen-To take proper account of the nonlinearities introduced
by MaxEnt reconstruction, it is necessary to calibrate the dence of the MaxEnt nonlinearity on the parameters def and

aim. A synthetic data set was subjected to holistic MaxEntintensities of the spectral peaks. With in situ error analysis
(31) , this calibration is accomplished by adding synthetic reconstruction, with varying values of the parameters. Figure

2 shows the calibration curves, and Table 1 shows the corre-signals of known amplitude to the raw data, and comparing
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FIG. 3. A Constant-l MaxEnt reconstruction from HNHA data recorded
FIG. 4. Calibration data for four MaxEnt reconstructions of the spec-for a 30 mM sample of a cyclic hexapeptide labeled as described in the text.

trum shown in Fig. 3. The reconstruction shown in Fig. 3 corresponds toData were recorded on a Bruker AMX 500 at 298 K. Sixteen transients and
l Å 0.1. Def was set to 100 for all four reconstructions. For comparison1024 complex points were collected in the acquisition dimension; nonlinear
with the indicated values of aim, measurement of the noise in an emptysampling of 64 complex points out of a linear schedule of 256 points required
row of the data yielded an RMS value of 3900. Note that data for high50 min. of data-acquisition time. The spectral widths were 10000 Hz in t2 and
values of aim do not lie on a line passing through the origin, indicating the8000 Hz in t1. Eleven synthetic signals, with linewidths of 10 Hz in each
greater nonlinearity of MaxEnt reconstruction in this regime.dimension, were added to the raw data (indicated by the dotted line). Processing

in f2 used cosine-squared-bell apodization and Fourier transformation; processing
small values, but aim has a greater influence on the nonlin-in f1 used MaxEnt reconstruction as described in the legend to Fig. 4.
earity. Only if aim is rather high can the value of def signifi-
cantly influence the reconstruction.

sponding values of l. The results demonstrate that when aim
RESULTS AND DISCUSSIONis close to the noise level, l will be higher and the calibration

curves more linear. A rather high value for aim will give
Quantitative J Correlation

the reconstruction more freedom to maximize the entropy;
l will be smaller and the reconstruction more nonlinear. Two-dimensional (1H, 1H) HNHA experiments (32) were

performed, with and without nonlinear sampling, on the cy-High values of def yield more linear reconstructions than do

TABLE 2
3JNa Coupling Constants for the Cyclic Hexapeptide Whose Spectrum Is Shown in Fig. 3,

Computed with and without in Situ Calibration of the Peak Intensities

MaxEnt

Uncalibrated Calibrated

Constant-l Constant-aim Constant-l Constant-aim
2D

Residue 1D DFT Tight Loose Tight Loose Tight Loose Tight Loose

Phe 2 8.6 8.4 8.2 7.9 8.2 8.1 8.3 8.3 8.3 8.5
Phe 3 9.6 9.4 9.2 9.1 9.2 9.2 9.3 9.2 9.3 9.3
Phe 6 6.6 6.4 6.1 5.3 6.1 5.6 6.3 6.4 6.4 6.8

Note. The column labels ‘‘Tight’’ and ‘‘Loose’’ indicate the degree to which the reconstruction was constrained to match the data; loose implies large
aim or small l. The calibration curves for these reconstructions are shown in Fig. 4.
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clic hexapeptide cyclo-( –D–Pro–Phe–Phe–Lys(Z) – were recorded, one using linear and one using nonlinear
sampling; 12 data sets were recorded for each series. TheTrp–Phe– ) labeled with 15N in the three phenylalanine posi-

tions. The linearly sampled data set was processed by Fourier linearly sampled data were processed by Fourier transforma-
tion, and the relaxation times were determined by fitting antransformation, and peak intensities were determined by inte-

grating the volumes. For a molecule of this size, quantitative exponential decay to the measured intensities. The nonlin-
early sampled data were processed by MaxEnt reconstruc-J correlation yields coupling constants that are about 2–3%

smaller than those obtained by measuring splittings in a one- tion.
Three different types of reconstructions were performed:dimensional spectrum (32) . The nonlinearly sampled data

set was processed using MaxEnt reconstruction. Constant-
aim processing was performed using high and low values
of aim, and Constant-l processing was performed with low
and high values of l (corresponding roughly to the high and
low aim reconstructions, respectively) . The high-l recon-
struction is shown in Fig. 3.

The measured intensity of the injected peaks is shown in
Fig. 4, demonstrating the differences caused by the choice
of the parameters and the algorithm. For this data set, the
differences due to the choice of parameters is substantial,
but the Constant-l and Constant-aim reconstructions yield
very similar results. The calculated coupling constants (de-
rived from the ratio of the cross peak and the diagonal peak
intensities) are compared in Table 2. For the tightly con-
strained reconstructions (low aim or high l) , evaluation
without calibration yields coupling constants that are too
small; the error turns out to be relatively minor. As can be
expected, the largest relative error occurs for the smallest
coupling constant (Phe-6), which results from the smallest
cross peak. (The effect of nonlinearity on peak ratios is more
pronounced the further the ratio is from one.) The in situ
calibration works equally well in both cases, resulting in
coupling constants close to those obtained from the DFT
spectrum. The more biased results that are obtained when
aim is large can be understood on the basis of Fig. 4, which
shows that the nonlinearity of MaxEnt reconstruction is more
pronounced for large values of aim. Both loosely constrained
reconstructions (high aim or low l) yield coupling constants
that are too small, and again the coupling constant of Phe-
6 has the largest error. The coupling constant of Phe-3 (the
largest coupling constant) is hardly affected. In situ calibra-
tion of the Constant-l reconstruction yields acceptable cou-
pling constants, but calibration of the Constant-aim recon-
struction yields coupling constants that are too large. We
attribute this to the fact that the nonlinearity is different in
the rows that contain signal from the rows that contain the
synthetic peaks. Thus, the correction that is appropriate for

FIG. 5. 500 MHz T1 relaxation data obtained on a Varian Unity 500
the synthetic peaks is not necessarily appropriate for the for a 1.5 mM solution of Villin 14T in 90% H2O/10% D2O. In both spectra,
real intensities. This problem does not arise with Constant- 1024 points were collected in the t2 dimension and processed by 607-shifted

sine-squared-bell apodization and Fourier transformation. (A) A total ofl reconstruction, since there the nonlinearity is the same
256 linearly sampled data points in t1 (eight transients each) processed bythroughout the spectrum.
DFT. (B) A total of 64 nonlinearly sampled points in t1 (16 transients
each) processed by MaxEnt reconstruction. Prior to data processing, syn-Relaxation-Time Series
thetic signals used to calibrate the spectrum were added to the time-domain

An 15N relaxation-time series was recorded to determine data; they are in the region indicated by the dotted line. Note that the data
for (B) required half as much time to collect as the data for (A).the T1 relaxation times of Villin 14T (35, 36) . Two series
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FIG. 6. Comparison of relaxation rates determined from DFT spectra and MaxEnt spectra (one of which is shown in Fig. 5) . Values obtained with
and without calibration of the MaxEnt spectra are shown. (A) A selection of values for cross peaks in a relatively uncrowded region of the spectrum
(near 10 ppm in f2) . (B) A selection of values for cross peaks in a relatively crowded region of the spectrum (between 8 and 9 ppm in f2) . Variation
in the results reflect both errors in calibration of the MaxEnt spectra and errors in quantifying peak volumes (which are more pronounced for crowded
peaks) .

Constant-aim, holistic, and Constant-l. Calibration curves inherent in MaxEnt. The accuracy of the results depends on
both the choice of parameters and the reconstruction algo-were determined independently for each spectrum of the

series. Two sets of cross peaks were subjected to analysis, rithm. Low values of aim (close to the intrinsic noise level)
lead to very modest nonlinearities, which may remove theone consisting of peaks in an uncrowded region of the spec-

trum, and the other of peaks in a crowded region. One of need for in situ calibration altogether. With larger nonlinear-
ities, intensity calibration is necessary. In these situationsthe Constant-l reconstructions is shown in Fig. 5, and the

computed relaxation times are displayed in Fig. 6. the Constant-aim algorithm yields poor results, because it
leads to unpredictable variations in the nonlinearity, render-The results indicate that use of uncalibrated MaxEnt data

for obtaining relaxation rates is ill-advised, as the rates are ing accurate calibration impossible. Constant-l and holistic
reconstruction yield spectra that are more amenable to cali-greatly overestimated. [This is because MaxEnt tends to

shrink small values more than large ones, thereby increasing bration. However, the Constant-l algorithm has significantly
lower computational demands, and is easier to implementthe apparent decay rate (19)] . Calibration yields values

comparable to those obtained by conventional Fourier pro- on laboratory workstations. In addition, Constant-l recon-
struction is the only appropriate method for applications incessing. The RMS difference in the relaxation rates com-

puted from the DFT and calibrated Constant-l data is 7% which series of spectra are to be compared. As shown by
for the uncrowded region and 10% for the crowded region. our results, Constant-l reconstruction in concert with in situ
The corresponding differences for the uncalibrated data are calibration permits MaxEnt to be used in contexts calling
37 and 26%, respectively. Errors for holistic and Constant- for quantification of peak intensities. Among other benefits,
aim reconstructions are larger (data not shown). Normally, this opens the door to the use of nonlinear sampling to in-
holistic reconstruction would be expected to give the same crease sensitivity, enhance resolution, or reduce data collec-
result as Constant-l reconstruction, but this no longer holds tion time.
true when comparing a series of spectra—holistic recon-
struction can only guarantee that a single value of l is used

ACKNOWLEDGMENTS
within each spectrum, not across different spectra. In this
setting, Constant-l reconstruction is therefore preferable to

The authors thank Professor Dr. Horst Kessler and Dr. Michael Kurz for
holistic reconstruction. the samples of the cyclic hexapeptide and Dr. Michelle Markus for the

sample of Villin 14T. P.S. thanks the Deutsche ForschungsgemeinschaftCONCLUSION
and the Fonds der Chemischen Industrie for fellowships. This work was

In situ calibration of MaxEnt reconstructions is able to supported by the Rowland Institute for Science, the W. M. Keck Foundation,
the National Institutes of Health (Grant GM 47467), the National Scienceproduce reliable intensity estimates, despite the nonlinearity

AID JMR 1117 / 6j17$$$223 03-19-97 04:10:03 magas



339MAXIMUM-ENTROPY RECONSTRUCTIONS

Foundation (Grant MCB 9316938), and the Forschungsinstitut für Moleku- 19. D. L. Donoho, I. M. Johnstone, A. S. Stern, and J. C. Hoch, Proc.
Natl. Acad. Sci. USA 87, 5066–5068 (1990).lare Pharmakologie. We are grateful to the Center for Computational Sci-

ence at Boston University for providing time on a Thinking Machines CM- 20. J. Skilling, in ‘‘Maximum Entropy and Bayesian Methods’’ 1989
5 computer. Workshop, (P. F. Fougère, Ed.) , pp. 341–350, Kluwer Academic,

Dordrecht, The Netherlands, 1990.
21. S. Sibisi, in ‘‘Maximum Entropy and Bayesian Methods’’ 1989REFERENCES

Workshop, (P. F. Fougère, Ed.) , pp. 351–358, Kluwer Academic,
Dordrecht, The Netherlands, 1990.1. S. Sibisi, Nature 301, 134–136 (1983).

22. J. A. Jones and P. J. Hore, J. Magn. Reson. 92, 276–292 (1991).
2. J. Skilling, Nature 309, 748–749 (1984).

23. J. A. Jones and P. J. Hore, J. Magn. Reson. 92, 363–376 (1991).
3. S. Sibisi, J. Skilling, R. G. Brereton, E. D. Laue, and J. Staunton,

24. M. A. Delsuc, M. Robin, C. Van Heijenoort, C. B. Reisdorf, and E.Nature 311, 446–447 (1984).
Guittet, NATO ASI Ser. Ser. A 225, 163–174 (1991).

4. J. Skilling and R. K. Bryan, Mon. Not. R. Astron. Soc. 211, 111–
25. M. Robin, M.-A. Delsuc, E. Guittet, and J.-Y. Lallemand, J. Magn.

124 (1984).
Reson. 92, 645–650 (1991).

5. E. D. Laue, J. Skilling, and J. Staunton, J. Magn. Reson. 63, 418– 26. P. Hodgkinson, H. R. Mott, P. C. Driscoll, J. A. Jones, and P. J.
424 (1985). Hore, J. Magn. Reson. B 101, 218–222 (1993).

6. P. J. Hore, J. Magn. Reson. 62, 561–567 (1985). 27. P. Schmieder, A. S. Stern, G. Wagner, and J. C. Hoch, J. Biol.
7. J. C. Hoch, A. S. Stern, D. L. Donoho, and I. M. Johnstone, J. NMR 3, 569–576 (1993).

Magn. Reson. 64, 436–440 (1985). 28. P. Schmieder, A. S. Stern, G. Wagner, and J. C. Hoch, J. Biol.
8. J. F. Martin, J. Magn. Reson. 65, 291–297 (1985). NMR 4, 483–490 (1994).
9. E. D. Laue, M. R. Mayger, J. Skilling, and J. Staunton, J. Magn. 29. P. Hodgkinson, K. J. Holmes, and P. J. Hore, J. Magn. Reson. A

Reson. 68, 14–29 (1985). 120, 18–30 (1996).
30. J. C. Hoch and A. S. Stern, in ‘‘Encyclopedia of NMR’’ (D. M. Grant10. K. M. Wright and P. S. Belton, Mol. Phys. 58, 485–495 (1986).

and R. K. Harris, Eds.) , Vol. 5, pp. 2980–2988, Wiley, Chichester,11. J. C. J. Barna, E. D. Laue, M. R. Mayger, J. Skilling, and S. J. P.
England, 1996.Worrall, Biochem. Soc. Trans. 14, 1262–1263 (1986).

31. J. C. Hoch and A. S. Stern, ‘‘NMR Data Processing,’’ Wiley–Liss,12. J. C. J. Barna, E. D. Laue, M. R. Mayger, J. Skilling, and S. J. P.
New York, 1996.Worrall, J. Magn. Reson. 73, 69–77 (1987).

32. G. W. Vuister and A. Bax, J. Am. Chem. Soc. 115, 7772–777713. J. C. J. Barna, E. D. Laue, M. R. Mayger, J. Skilling, and S. J. P.
(1993).Worrall, J. Magn. Reson. 75, 384–389 (1987).

33. N. R. Nirmala and G. Wagner, J. Am. Chem. Soc. 110, 7557–7559
14. J. C. J. Barna, E. D. Laue, Lab. Pract. 36, 102–109 (1987).

(1988).
15. D. S. Stephenson, Prog. NMR Spectrosc. 14, 515–626 (1988). 34. L. E. Kay, D. A. Torchia, and A. Bax, Biochemistry 28, 8972–8979
16. J. C. Hoch, Methods Enzymol. 176, 216–241 (1989). (1989).
17. G. J. Daniell, P. J. Hore, J. Magn. Reson. 84, 515–536 (1989). 35. M. A. Markus, T. Nakayama, P. Matsudaira, and G. Wagner, J.

Biol. NMR 4, 553–574 (1994).18. M. A. Delsuc, in ‘‘Maximum Entropy and Bayesian Methods’’ 1990
Workshop, (J. Skilling, Ed.) , pp. 285–290, Kluwer Academic, Dor- 36. M. A. Markus, T. Nakayama, P. Matsudaira, and G. Wagner, Protein

Sci. 3, 70–81 (1994).drecht, The Netherlands, 1991.

AID JMR 1117 / 6j17$$$223 03-19-97 04:10:03 magas


